Building a comprehensive framework to estimate bycatch risk in relation to fishing strategies

Mathieu Brevet - PhD
Post-doctorate researcher, Station

Scales at which strategies (and how they vary)
are considered:

3) Strategies' distribution and dynamic, the Bay of Biscay example (2019-2022):

4) Estimating bycatch within defined strategies:

Estimating Bycatch From $\begin{aligned} & \text { Non-representative } \\ & \text { Samples: } \\ & \text { Simulation }\end{aligned}$ Samples: Simulation
Study With Regularized Multilevel
Regression and Post-stratificatio \rightarrow Used on the $\overrightarrow{\text { ObsMer program (externa }}$ observers on fishing vessels, volunteer-based)
with a focus on $\begin{array}{lll}\text { trawlers } & \text { focus } \\ \text { and } & \text { on pair } \\ \text { common }\end{array}$ dolphins in the Bay of
Biscay (Rouby et
\qquad
bliography:

$\#$ Week
2) From detailed fishing behaviours to strategy clusters:

Hierarchical Clustering on Principal Components (Lê et al. 2008), using previously computed strategy
variables without missing value (we removed before that 1% of vessels with missing values for the most fundamental strategy variables).

If clusterable, the clustering method is interest to obtain sub-strategy
categories (could be performed categories (could be performed until
obtaining a satisfying level of precision) or until no more clusterability is reached)

Clusters with homogeneous
fishing behaviours: considered as fishing strategies

> Testing for clusterability of this new dataset (Hopkin test $/$ dip test depending on sample size >100 <100 + Dudahart test for binary clusterization)

Re-attribution of behavioural variables

b) Second method: Random forest classification using previously computed detailed fishing strategies (error rate OOB: $\sim 30 \%$) $\overrightarrow{\text { Ut least one accidental bycatch, whatever the species or the year, being considered as the reference fleet on which random forest is trained) }}$

